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Quantised coordinate rings

Representation theory of quantum matrices

Poisson geometry

Symplectic leaves in Poisson matrix varieties

Total Positivity

Cells in totally nonnegative matrices
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The nonnegative world
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• A matrix is totally positive if each of its minors is positive.

• A matrix is totally nonnegative if each of its minors is non-

negative.

4



History

• Fekete (1910s)

• Gantmacher and Krein, Schoenberg (1930s): small oscillations,

eigenvalues

• Karlin and McGregor (1950s): statistics, birth and death pro-

cesses

• Lindström (1970s): planar networks

• Gessel and Viennot (1985): binomial determinants, Young

tableaux

• Gasca and Peña (1992): optimal checking

• Lusztig (1990s): reductive groups, canonical bases

• Fomin and Zelevinsky (1999/2000): survey articles (eg Math

Intelligencer)

• Postnikov (2007): the totally nonnegative grassmannian
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Examples


1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64




1 1 0 0
1 2 1 0
1 3 3 1
1 4 6 4




5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3


¿ How much work is involved in checking if a matrix is totally
positive?

Eg. n = 4: we need to compute 69 minors.

#minors =
n∑

k=1

(n
k

)2
=
(2n
n

)
− 1 ≈

4n
√
πn

by using Stirling’s approximation

n! ≈
√

2πn
nn

en
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Planar networks Consider a directed graph with no directed cy-

cles, n sources and n sinks.
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Edges directed left to right.

M =
(
mij

)
where mij

is the number of paths

from source si to sink tj.


5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3
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Notation The minor formed by using rows from a set I and
columns from a set J is denoted by [I | J].

Theorem (Lindström)

The path matrix of any planar network is totally nonnegative.

In fact, the minor [I | J] is equal to the number of families of

non-intersecting paths from sources indexed by I and sinks indexed

by J.

If we allow weights on paths then even more is true.

Theorem (Brenti)

Every totally nonnegative matrix is the weighted path matrix of

some planar network.
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2× 2 case

The matrix (
a b
c d

)

has five minors: a, b, c, d,∆ := ad− bc.

If b, c, d,∆ = ad− bc > 0 then

a =
∆ + bc

d
> 0

so it is sufficient to check four minors.
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Testing Total Positivity

Theorem (Fekete, 1913) A matrix is totally positive if each of
its solid minors is positive.

Solid minors: [i+ 1, ..., i+ t | j + 1, ..., j + t].

Examples: [1,2,3 | 2,3,4] and [2,3,4 | 2,3,4] are solid, whereas
[1,2,4 |1,2,3] isn’t.

Theorem (Gasca and Peña, 1992) A matrix is totally positive if
each of its initial minors is positive.

Initial minors: solid minors with i = 0 or j = 0.

Examples: [1,2,3 | 2,3,4] is initial, whereas [2,3,4 | 2,3,4] isn’t.

Question: What about TNN matrices?
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Totally nonnegative cells

Let Mtnn
m,p be the set of totally nonnegative m× p real matrices.

Let Z be a subset of minors. The cell SoZ is the set of matrices

in Mtnn
m,p for which the minors in Z are zero (and those not in Z

are nonzero).

Some cells may be empty. The space Mtnn
m,p is partitioned by the

non-empty cells.

Example:

(
1 1
1 1

)
is TNN and belongs to the cell S◦{[12|12]}.
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A trivial example In Mtnn
2,1 , there are only 2 minors: [1|1] and

[2|1]. Hence there are 22 cells:

S◦{∅} = {
(
x
y

)
| x, y > 0}.

S◦{[1|1]} = {
(

0
y

)
| y > 0}.

S◦{[2|1]} = {
(
x
0

)
| x > 0}.

S◦{[1|1],[2|1]} = {
(

0
0

)
}.

Note that there are no empty cell.
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Example In Mtnn
2 the cell S◦{[2|2]} is empty.

For, suppose that

(
a b
c d

)
is tnn and d = 0.

Then a, b, c ≥ 0 and also ad− bc ≥ 0.

Thus, −bc ≥ 0 and hence bc = 0 so that b = 0 or c = 0.

Exercise There are 14 non-empty cells in Mtnn
2 .
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Cauchon diagrams

A Cauchon diagram on an m × p array is an m × p array of

squares coloured either black or white such that for any square

that is coloured black the following holds:

Either each square strictly to its left is coloured black, or each

square strictly above is coloured black.

Here are an example and a non-example
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• Postnikov (arXiv:math/0609764) There is a bijection be-

tween Cauchon diagrams on an m× p array and non-empty cells

S◦Z in Mtnn
m,p.

For 2 × 2 matrices, this says that there is a bijection between

Cauchon diagrams on 2× 2 arrays and non-empty cells in Mtnn
2 .
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2× 2 Cauchon Diagrams
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A first link between TNN and Cauchon diagrams

Let C be a Cauchon diagram. We say that (i, α) ∈ C if (i, α) is
black in C

We say that X = (xi,α) ∈ Mm,p(R) is a Cauchon matrix asso-
ciated to the Cauchon diagram C provided that for all (i, α) ∈
[1,m]× [1, p], we have xi,α = 0 if and only if (i, α) ∈ C.

Lemma Every totally nonnegative matrix over R is a Cauchon
matrix.

Proof Let X = (xi,α) be a tnn matrix. Suppose that some
xi,α = 0, and that xk,α > 0 for some k < i. Let γ < α. We
need to prove that xi,γ = 0. As X is tnn, we have −xk,αxi,γ =

det

(
xk,γ xk,α
xi,γ xi,α

)
≥ 0. As xk,α > 0, this forces xi,γ ≤ 0. But since

X is tnn, we also have xi,γ ≥ 0, so that xi,γ = 0, as desired.
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Postnikov’s Algorithm starts with a Cauchon diagram and pro-

duces a planar network. The family of minors associated to this

Cauchon diagram is the set of minors that vanish on the path

matrix associated to this planar network. The associated TNN

cell is nonempty.

Example

• •

• • •

• • •

1

2

3

1 2 3

 5 3 1
3 2 1
1 1 1


This path matrix is TNN by Lindström Lemma.

The only minor that vanishes is [123|123].

So {[123|123]} defines a nonempty cell.
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Deleting Derivations Algorithm
= Cauchon reduction
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Two algorithms

Deleting derivations algorithm:

(
a b
c d

)
−→

(
a− bd−1c b

c d

)

Restoration algorithm:

(
a b
c d

)
−→

(
a+ bd−1c b

c d

)
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Step (j, β)

Fix a row-index j and a column-index β. We define a map

fj,β :Mm,p(K)→Mm,p(K)

by

fj,β((xi,α)) = (x′i,α) ∈Mm,p(K),

where

x′i,α :=

{
xi,α − xi,βx−1

j,βxj,α if xj,β 6= 0, i < j and α < β

xi,α otherwise.

We set M(k,γ) := fk,γ ◦ · · · ◦ fm,p−1 ◦ fm,p(M).

M(1,1) is called the matrix obtained from M by the Deleting

Derivations Algorithm.
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xj,β

xi,β

xj,α

xi,α

j

β

DD

fj,β

R xj,β

xi,β

xj,α

x′i,α

with x′i,α := xi,α − xi,βx−1
j,βxj,α

ie xi,α := x′i,α + xi,βx
−1
j,βxj,α
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An example

Set M =

 3 2 1
3 3 0
1 1 1

. Then M(3,3) = f3,3(M). The pivot is the

entry in position (3,3). The pivot is nonzero, so we have to

change all entries that are strictly North-West of (3,3):

M =


3 2 1
3 3 0

1 1 1

 −→M(3,3) =


2 1 1
3 3 0

1 1 1

 .

And then we continue

M(3,3) =


2 1 1
3 3 0

1 1 1

 −→M(3,2) =


1 1 1
0 3 0

1 1 1

 .
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For the next step, observe that there is nothing strictly North-

West of the box (3,1). Hence

M(3,2) =


1 1 1
0 3 0

1 1 1

 −→M(3,1) =


1 1 1
0 3 0

1 1 1

 .

For the next step, the pivot is in position (2,3). As the pivot is

0, nothing is changing, ie:

M(3,1) =


1 1 1

0 3 0

1 1 1

 −→M(2,3) =


1 1 1

0 3 0

1 1 1

 .
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For the next step, the pivot is in position (2,2). As the pivot is

nonzero, we have to change the entries that are stictly North-

West of (2,2):

M(2,3) =


1 1 1

0 3 0
1 1 1

 −→M(2,2) =


1 1 1

0 3 0
1 1 1

 .

The last few steps are trivial as in each case there is nothing

strictly North-West of the pivot. Hence we have:

M(1,1) =

 1 1 1
0 3 0
1 1 1

 .
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TNN Matrices and DD algorithm

Recall that X = (xi,α) ∈ Mm,p(R) is a Cauchon matrix asso-

ciated to the Cauchon diagram C provided that for all (i, α) ∈
[1,m]× [1, p], we have xi,α = 0 if and only if (i, α) ∈ C.

Goodearl-L.-Lenagan Let M be a matrix with real entries. We

can apply the deleting derivation algorithm to M . Let N =

M(1,1) denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and Cauchon.
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An example

Set M =

 11 4 2
4 2 1
2 1 1

. Then M(3,3) =

 7 2 2
2 1 1
2 1 1

 ,

M(3,1) = M(3,2) =

 3 2 2
0 1 1
2 1 1

 , M(2,3) =

 3 0 2
0 1 1
2 1 1

 , and

M(1,1) = M(1,2) = M(1,3) = M(2,1) = M(2,2) =

 3 0 2
0 1 1
2 1 1



So M is TNN as M(1,1) is nonnegative and its zeroes form a

Cauchon diagram.

27



Application 1: new proof of Brenti’s Theorem

Recall that M =

 11 4 2
4 2 1
2 1 1

 is TNN and M(1,1) =

 3 0 2
0 1 1
2 1 1

.

From M(1,1) we can deduce the following weighted planar net-

work

• •

• •

• • •

1

2

3

1 2 3

0

0

3 · 2−1 2

1 · 1−1 1

1 · 1−1 12 · 1−1

The underlying unweighted planar network

comes from Postnikov’s work

The weights come from M(1,1)

M is its weighted path matrix
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TNN cells

Goodearl-L.-Lenagan Let M and N be two real m×p matrices.

Then M and N are TNN and in the same cell if and only if M(1,1)

and N(1,1) are nonnegative and Cauchon associated to the same

Cauchon diagram.

So the TNN cells are the fibres of the map π that sends a TNN

matrix M to the Cauchon diagram associated to M(1,1).

π−1(C) is the TNN cell associated to the Cauchon diagram C.

The TP cell corresponds to the all white Cauchon diagram, ie a

matrix M is TP iff M(1,1) is positive.
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Approximation of TNN matrices by TP matrices

M TNN

Nε TP

DD

R
N

(1,1)
ε positive

M(1,1) nonnegative + Cauchon

0 replaced by ε > 0

Problem: Nε does NOT tend to M when ε tends to 0.

Example: M =

(
1 0
1 0

)
= M(1,1), N

(1,1)
ε =

(
1 ε
1 ε

)
, from which

the restoration algorithm produces Nε =

(
2 ε
1 ε

)
.
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Approximation of TNN matrices by TP matrices

M TNN

Nε TP

DD

R
N

(1,1)
ε positive

M(1,1) nonnegative + Cauchon

0 in position (i, j)

replaced by ε2(m−i)p+(p−j)
ε→ 0
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Approximation of TNN matrices by TP matrices

M :=


4 2 1
3 2 1
1 1 1
1 1 1

 , M(1,1) =


1 0 1
1 1 1
0 0 1
1 1 1

 , N
(1,1)
ε =


1 ε1024 1
1 1 1
ε32 ε16 1
1 1 1

 ,
from which the restoration algorithm produces

Nε =


4 + 2ε16 + ε32 + 2ε1024 + ε1040 2 + ε1024 + ε16 1

3 + 2ε16 + ε32 2 + ε16 1
1 + ε16 + ε32 1 + ε16 1

1 1 1

 .

32



TNN versus Quantum

Goodearl-L.-Lenagan (2011) Let F be a family of minors in

the coordinate ring of Mm,p(C), and let Fq be the corresponding

family of quantum minors in Oq(Mm,p(C)). Then the following

are equivalent:

1. The totally nonnegative cell associated to F is non-empty.

2. Fq is the set of all quantum minors that belong to torus-

invariant prime in Oq(Mm,p(C)).
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Application: TNN test

Theorem (Gasca and Peña, 1992) A matrix is totally positive if

each of its initial minors is positive.

Initial minors: solid minors with i = 0 or j = 0.

Examples: [1,2,3 | 2,3,4] is initial, whereas [2,3,4 | 2,3,4] isn’t.

In the following, we give a criterion for a real matrix to be TNN

and belong to a given cell. Our criterion generalises Gasca and

Peña’s Theorem.
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Lacunary sequence

Let C be a Cauchon diagram. We say that a sequence

((i0, α0), (i1, α1), ..., (it, αt))

is a lacunary sequence with respect to C if the following condi-

tions hold:

1. t ≥ 0;

2. the boxes (i1, α1), (i2, α2), ..., (it, αt) are white in C;

3. 1 ≤ i0 < i1 < · · · < it ≤ m and 1 ≤ α0 < α1 < · · · < αt ≤ p;

4. If it < i ≤ m and αt < α ≤ p, then (i, α) is a black box in C;
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Lacunary sequence: Axiom 5

5. Let s ∈ {0, . . . , t− 1}. Then:

• either (i, α) is a black box in C for all is < i < is+1 and

αs < α,

• or (i, α) is a black box in C for all is < i < is+1 and

α0 ≤ α < αs+1;
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Axiom 5

x0

. . .
xs

x+
s

OR

x0

. . .
xs

x+
s

where x+
s := xs+1 and xk := (ik, αk).
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Lacunary sequence: Axiom 6

6. Let s ∈ {0, . . . , t− 1}. Then:

• either (i, α) is a black box in C for all is < i and αs < α <

αs+1,

• or (i, α) is a black box in C for all i < is+1 and αs < α <

αs+1.
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Axiom 6

x0

. . .
xs

x+
s

OR

x0

. . .
xs

x+
s

where x+
s := xs+1.
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Example of lacunary sequence

C =

One easily checks that ((1,1), (3,2)) is a lacunary sequence

starting at (1,1). Note however that ((1,1), (2,3)) and ((1,1), (3,3))

are not lacunary sequences.
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Existence of lacunary sequences

Lemma Fix a Cauchon diagram C. Then for any (j, β) ∈ [1,m]×
[1, p], there exists a lacunary sequence ((j, β), (i1, α1), ..., (it, αt))

starting at (j, β).
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An example

C =

((1,1), (3,2)) ((1,2), (2,3)) or ((1,2), (3,3)) ((1,3))

((2,1), (3,2)) ((2,2), (3,3)) ((2,3))

((3,1)) ((3,2)) ((3,3))
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Existence of lacunary sequences

There is actually an algorithm that produces a lacunary sequence

starting at any box. For, imagine that we have started construct-

ing a lacunary sequence: ((i0, α0), (i1, α1), ..., (it, αt) = (j, β)).

And assume that there is a white box which is strictly south-east

of (j, β) (so that the above is not a lacunary sequence). Then we

can construct the next element in the sequence by distinguishing

between 3 cases.
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Case 1: all boxes (i, α) with i > j and α ≤ β are black

β

j

γ

l W
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Case 2: all boxes (i, α) with i ≤ j and α > β are black

β

j

γ

l W
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Case 3: we are not in cases 1 nor 2

β

j

γ

l

k

W0

W1

W2

W0
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TNN criteria

Fix a Cauchon diagram C. For all (j, β) ∈ [1,m] × [1, p], choose
a lacunary sequence ((j, β), (i1, α1), ..., (it, αt)) starting at (j, β),
and set

∆C
j,β := [j < i1 < · · · < it | β < α1 < · · · < αt] ∈ O (Mm,p(C)) .

L.-Lenagan Let M ∈Mm,p(R). TFAE

1. M is TNN and belongs to the TNN cell parametrised by C.

2. For all (j, β) ∈ [1,m]×[1, p], we have ∆C
j,β(M) = 0 if (j, β) ∈ C

and ∆C
j,β(M) > 0 if (j, β) /∈ C.

This test only involves m× p minors. This generalises the result
of Gasca and Peña.
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An example

C =

∆1,1 = [13|12] > 0 ∆1,2 = [12|23] or [13|23] > 0 ∆1,3 = [1|3] = 0

∆2,1 = [23|12] = 0 ∆2,2 = [23|23] = 0 ∆2,3 = [2|3] > 0

∆3,1 = [3|1] > 0 ∆3,2 = [3|2] > 0 ∆3,3 = [3|3] > 0
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TNN criteria: sketch of proof

Fix a Cauchon diagram C. For all (j, β) ∈ [1,m] × [1, p], choose
a lacunary sequence ((j, β), (i1, α1), ..., (it, αt)) starting at (j, β),
and set

∆C
j,β := [j < i1 < · · · < it | β < α1 < · · · < αt] ∈ O (Mm,p(C)) .

Let M ∈Mm,p(R). If one of the following conditions is satisfied

1. M is TNN and belongs to the TNN cell parametrised by C;

2. For all (j, β) ∈ [1,m]×[1, p], we have ∆C
j,β(M) = 0 if (j, β) ∈ C

and ∆C
j,β(M) > 0 if (j, β) /∈ C;

then

∆C
j,β(M) = tj,β · ti1,α1

· · · tit,αt,

where M(1,1) = (ti,α).
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