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T he nonnegative world



e A matrix is totally positive if each of its minors is positive.

e A matrix is totally nonnegative if each of its minors is non-
negative.



History

e Fekete (1910s)

e Gantmacher and Krein, Schoenberg (1930s): small oscillations,
eigenvalues

e Karlin and McGregor (1950s): statistics, birth and death pro-
cesses

e Lindstrom (1970s): planar networks

e Gessel and Viennot (1985): binomial determinants, Young
tableaux

e Gasca and Pefna (1992): optimal checking

e Lusztig (1990s): reductive groups, canonical bases

e Fomin and Zelevinsky (1999/2000): survey articles (eg Math
Intelligencer)

e Postnikov (2007): the totally nonnegative grassmannian



Examples

1 1 1 1 1 1 0 O 56 30
1 2 4 8 1 210 4 7 4 0
1 3 9 27 1 3 31 1 4 4 2
1 4 16 64 1 4 6 4 O 12 3

. How much work is involved in checking if a matrix is totally
positive?

Eg. n = 4. we need to compute 69 minors.

_ L NP 2n 4™
#mlnors:kzzjl (k> = (ﬂ)—lw\/ﬁ

by using Stirling’s approximation
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Planar networks Consider a directed graph with no directed cy-

cles, n sources and n sinks.
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Edges directed left to right.

M = (mij) where m;;
is the number of paths
from source s; to sink t;.

5 6 3 0
4 7 4 0
1 4 4 2
O 1 2 3



Notation The minor formed by using rows from a set I and
columns from a set J is denoted by [I | J].

Theorem (Lindstrom)

The path matrix of any planar network is totally nonnegative.
In fact, the minor [I | J] is equal to the number of families of
non-intersecting paths from sources indexed by I and sinks indexed
by J.

If we allow weights on paths then even more is true.

Theorem (Brenti)
Every totally nonnegative matrix is the weighted path matrix of
some planar network.




2 X 2 case

(2 4)

has five minors: a,b,c,d, A = ad — bc.

The matrix

If b,c,d, A = ad — bc > 0 then

A+ bc
- d
soO it is sufficient to check four minors.

a

> 0



Testing Total Positivity

Theorem (Fekete, 1913) A matrix is totally positive if each of
its solid minors is positive.

Solid minors: [i +1,..,i+t|j+1,....5+1].

Examples: [1,2,3 | 2,3,4] and [2,3,4 | 2, 3,4] are solid, whereas
[1,2,4 |1,2,3] isn't.

Theorem (Gasca and Pena, 1992) A matrix is totally positive if
each of its initial minors is positive.

Initial minors: solid minors with ¢+ =0 or 5 = 0.
Examples: [1,2,3 | 2,3,4] is initial, whereas [2,3,4 | 2,3,4] isn't.

Question: What about TNN matrices?

10



Totally nhonnegative cells
Let M}{,J‘)” be the set of totally nonnegative m X p real matrices.
Let Z be a subset of minors. The cell S% is the set of matrices
in M},Q,” for which the minors in Z are zero (and those not in Z

are nonzero).

Some cells may be empty. The space M},Qr;) IS partitioned by the
non-empty cells.

_ 1 1. °
Example: ( 11 ) iIS TNN and belongs to the cell S{[12|12]}.
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A trivial example In MY, there are only 2 minors: [1|1] and
[2|1]. Hence there are 22 cells:

ﬁm:4<§>|%y>0}
so o ={[° 0
(=1, ) 1v>0h
o T

%DM}={<0>|$>O}

o . @)
%mupM}—{<o>}

Note that there are no empty cell.
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tnn 0 :
Example In M5" the cell S{[2|2]} IS empty.

For, suppose that < CCL Z) iIs tnn and d = 0.

Then a,b,c > 0 and also ad — bc > 0.

Thus, —bc > 0 and hence bc = 0 so that b =0 or ¢ = 0.

Exercise There are 14 non-empty cells in ME™".
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Cauchon diagrams

A Cauchon diagram on an m X p array iS an m X p array of
squares coloured either black or white such that for any square
that is coloured black the following holds:

Either each square strictly to its left is coloured black, or each
square strictly above is coloured black.

Here are an example and a non-example
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e Postnikov (arXiv:math/0609764) There is a bijection be-
tween Cauchon diagrams on an m X p array and non-empty cells
S% in M.

For 2 x 2 matrices, this says that there is a bijection between
Cauchon diagrams on 2 x 2 arrays and non-empty cells in /\/th””.
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A first link between TNN and Cauchon diagrams

Let C be a Cauchon diagram. We say that (i,«a) € C if (4,«) is
black in C

We say that X = (z;,) € Mmp(R) is a Cauchon matrix asso-
ciated to the Cauchon diagram C provided that for all (i,«a) €
[1,m] x [1,p], we have z; , = 0 if and only if (i,a) € C.

Lemma Every totally nonnegative matrix over R is a Cauchon
matrix.

Proof Let X = (z;,) be a tnn matrix. Suppose that some
r;o = 0, and that z,, > 0 for some k < i. Let vy <a We
need to prove that T~ = 0. As X is tnn, we have —Tp aTiy =

det k7 Tha) > 0. As T o > 0, this forces z; , < 0. But since
Tiy Tia ’ ’
X is tnn, we also have T ~ > 0, so that T~ = O, as desired.

17



Postnikov’s Algorithm starts with a Cauchon diagram and pro-
duces a planar network. The family of minors associated to this
Cauchon diagram is the set of minors that vanish on the path
matrix associated to this planar network. The associated TNN
cell is nonempty.

Example
5 3 1
1 1 1
w $—2 T his path matrix is TNN by Lindstrom Lemma.

The only minor that vanishes is [123]123].
-3 So {[123]|123]} defines a nonempty cell.

_
|
i

N ¢——¢
we—r
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Deleting Derivations Algorithm
— Cauchon reduction
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Two algorithms

Deleting derivations algorithm:
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Step (4, 5)

Fix a row-index 57 and a column-index 5. We define a map

f],ﬁ . Mm,p(K) — Mm’p(K)

by
fi.8((xi0)) = (2] o) € Mmp(K),
where
=) Tia T xi,ﬁx;éwj,a ifx;37#0,i<jand a<f
o Ti o otherwise.

We set M(k7) = Jey0 0 fmp-10 fm,p(M).

ML) s called the matrix obtained from M by the Deleting
Derivations Algorithm.
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i,

Lj,a

*3.,8

DD xé,a 337;”3
5.8
(—
R Lj,a 5.6

i N g

e Tjoy =

/ -1
xi,a —I_ xi;ﬁxj,ﬂxjaa
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An example

321
Set M= | 3 3 0 |. Then M(33) = f3 3(M). The pivot is the
111

entry in position (3,3). The pivot is nonzero, so we have to
change all entries that are strictly North-West of (3, 3):

3 2] 1 2 1] 1
M=133l0|__yuG3dH_|33]o0
o1 11| L

And then we continue

2

1
3
1|

1

1
3
1A

= O
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For the next step, observe that there is nothing strictly North-
West of the box (3,1). Hence

111 111
G|l 030 | __ @[ 030
I 1

For the next step, the pivot is in position (2,3). As the pivot is
0, nothing is changing, ie:

= O |+
— W |
I—‘I:ol—‘
RO |k
— W |-
I—‘I:OI—*
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For the next step, the pivot is in position (2,2). As the pivot is
nonzero, we have to change the entries that are stictly North-

West of (2,2):

1 1 1 1 1 1
23) _ 22) _
1 1 1 1 1 1

The last few steps are trivial as in each case there is nothing
strictly North-West of the pivot. Hence we have:

11 1
M =1 0 3 0
11 1
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TNN Matrices and DD algorithm

Recall that X = (z;,) € Mmp(R) is a Cauchon matrix asso-
ciated to the Cauchon diagram C provided that for all (i,«a) €
[1,m] x [1,p], we have z; , = 0 if and only if (i,a) € C.

Goodearl-L.-Lenagan Let M be a matrix with real entries. We
can apply the deleting derivation algorithm to M. Let N =
M(L1) denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and Cauchon.
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An example

11 4 2 7 2 2
Set M=| 4 2 1| ThenMB3 =21 1],
2 1 1 2 11
3 2 2 30 2
MG =mGB2)=]101 1|, M3 =01 1|, and
2 11 2 1 1
30 2
ML) — Ar(12) — A(1,3) — A2 — p22) = | 0 1 1
2 11

So M is TNN as M(1:1) is nonnegative and its zeroes form a
Cauchon diagram.
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Application 1: new proof of Brenti’'s Theorem

11 4 2 30 2
Recallthat M =| 4 2 1 |is TNNand ML =0 1 1
2 1 1 2 1 1

From M(11) we can deduce the following weighted planar net-

WOrk

2 1 The underlying unweighted planar network
comes from Postnikov's work

The weights come from M (1:1)

M is its weighted path matrix
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TNN cells

Goodearl-L.-Lenagan Let M and N be two real m x p matrices.
Then M and N are TNN and in the same cell if and only if (1,1
and N(1:1) are nonnegative and Cauchon associated to the same
Cauchon diagram.

So the TNN cells are the fibres of the map « that sends a TNN
matrix M to the Cauchon diagram associated to M(1:1),

7~ 1(C) is the TNN cell associated to the Cauchon diagram C.

The TP cell corresponds to the all white Cauchon diagram, ie a
matrix M is TP iff M(L1) is positive.
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Approximation of TNN matrices by TP matrices

DD
M TNN —— M11) ponnegative + Cauchon

O replaced by € > 0O

Ne TP —— NOD positive
R

Problem: N: does NOT tend to M when ¢ tends to O.

1 O 1 €

2 €
1 €

Example: M = (1 O) — D O (1 6) , from which
the restoration algorithm produces N = (
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Approximation of TNN matrices by TP matrices

DD
M TNN —— M(11) ponnegative 4+ Cauchon

O in position (3, 7)
e—0

replaced by 20" P9

L 4

Ne TP ——— Ng(l’l) positive
R
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Approximation of TNN matrices by TP matrices

7LD —

J I

R = WP
= NN
el e

_ O M=

= O = O

el

1 1

from which the restoration algorithm produces

N — 3_|_2€16_|_€32 2_|_€16
€ — 1_|_€16_|_€32 1_|_€16
1

\ 1

D

(4 4 216 4 (32 4 21024 | (1040 5 4 (1024 4 (16

1024
1
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TNN versus Quantum

Goodearl-L.-Lenagan (2011) Let F be a family of minors in
the coordinate ring of My, »(C), and let F; be the corresponding
family of quantum minors in Oy(Mm »(C)). Then the following
are equivalent:

1. The totally nonnegative cell associated to F is non-empty.

2. Fq is the set of all quantum minors that belong to torus-
invariant prime in Og(Mn p(C)).
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Application: TNN test

Theorem (Gasca and Pena, 1992) A matrix is totally positive if
each of its initial minors is positive.

Initial minors: solid minors with ¢ =0 or 5 = 0.
Examples: [1,2,3 | 2,3,4] is initial, whereas [2,3,4 | 2,3,4] isn't.

In the following, we give a criterion for a real matrix to be TNN

and belong to a given cell. Our criterion generalises Gasca and
Pena’s Theorem.
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Lacunary sequence

Let C be a Cauchon diagram. We say that a sequence

((i07a0)7 (ilao‘l)a'“a (itaat))
IS a lacunary sequence with respect to C' if the following condi-
tions hold:

1. t > 0;
2. the boxes (i1,a1), (i, an), ..., (it,a¢) are white in C;

3. 1< <1<~ <yp<mand 1 <ogp<a; < <o <p;

4. If ir <i<m and oy < a < p, then (i,a) is a black box in C;

35



Lacunary sequence: Axiom 5

5. Let s€{0,...,t—1}. Then:

e either (¢,) is a black box in C for all is < i < 441 and

a3<Oé,

e of (i,a) is a black box in C for all is < i < ig47 and
ag < a < gy,

36



Axiom 5

L0

OR

where x;'_ = Ts41 and T .— (’I:k,()ék).



Lacunary sequence: Axiom 6

6. Let s€{0,...,t—1}. Then:

e cither (7,«) is a black box in C for all i <7 and as < a <
Qg+1,

e of (i,cr) is a black box in C for all i <igyq and as < a <
Oés_|_1.

38



AXiom 6

OR

where x;" = X1




Example of lacunary sequence

One easily checks that ((1,1), (3,2)) is a lacunary sequence
starting at (1,1). Note however that ((1,1), (2,3)) and ((1,1), (3,3))
are not lacunary sequences.
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Existence of lacunary sequences

Lemma Fix a Cauchon diagram C. Then for any (4,08) € [1,m] X
[1,p], there exists a lacunary sequence ((7,0), (i1,a1),..., (it,at))
starting at (4, 3).
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An example

-

((1,1),(3,2)) | ((1,2),(2,3)) or ((1,2),(3,3)) | ((1,3))
((2,1),(3,2)) 1 ((2,2),(3,3)) ((2,3))
((3,1)) ((3,2)) ((3,3))
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Existence of lacunary sequences

There is actually an algorithm that produces a lacunary sequence
starting at any box. For, imagine that we have started construct-
ing a lacunary sequence: ((ig,ag), (i1,a1),..., (it,ar) = (4,3)).
And assume that there is a white box which is strictly south-east
of (4,3) (so that the above is not a lacunary sequence). Then we
can construct the next element in the sequence by distinguishing
between 3 cases.
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Case 1: all boxes (i,«) with 7 > j and o < 3 are black

B Y

44



Case 2: all boxes (i,a) with 1 < j and « > 3 are black

B Y
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Case 3: we are not in cases 1 nor 2

46



T NN criteria

Fix a Cauchon diagram C. For all (4,8) € [1,m] x [1,p], choose
a lacunary sequence ((4,8), (i1,a1),..., (it,¢)) starting at (4, 8),

and set
Agﬁ:: <iiz<---<it|B<a; < - <ag] €O (Mpmp(C)).

L.-Lenagan Let M € My, »(R). TFAE

1. M is TNN and belongs to the TNN cell parametrised by C.

2. For all (4,8) € [1,m] x[1,p], we have Aj(/:ﬁ(]\/[) =0if (4,8) € C
and Afﬁ(M) >0 if (4,8) ¢ C.

This test only involves m X p minors. This generalises the result

of Gasca and Pena.
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An example

:13|12] >0 A1,2 =

23|12] =0 Agp =

:3|1] >0 A3,2 =

48

:12|23] or [13|23] > 0 A1’3 =1

:23|23] =0 AQ 3 = :2

3]12] > 0 A3z3=[3

]>0

]>0



T NN criteria: sketch of proof

Fix a Cauchon diagram C. For all (4,8) € [1,m] x [1,p], choose
a lacunary sequence ((7,0), (i1,a1),..., (it,¢)) starting at (g, 3),
and set

ASyi=[j<ir<-<it|B<ar<- <oy €O (Mmp(C)).
Let M € Mu p(R). If one of the following conditions is satisfied

1. M is TNN and belongs to the TNN cell parametrised by C;

2. Forall (4,8) € [1,m] x[1,p], we have AgB(M) =0if (4,8) € C
and AfB(M) >0 if (4,8) ¢ C;

then
C — . .
A]aﬁ(M) o tjaﬁ ‘ t’L]_,O{]_ T tzt,()ép

where M(11) = (¢; ).
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